
Descriptive Set Theory HW 6

Thomas Dean

Problem 1. Show the following:

1. LO is a closed subset of 2N2
and WO is co-analytic.

2. Prove that WO is actually Π1
1-complete.

Solution.

1. Given x ∈ 2N2
, notice that n < m is a clopen condition because it corre-

sponds with checking x(n,m) = 1. When you write out the definition of
a linear order, one notices that we’re just universally quantifying a bunch
of clopen expressions like (n < m ∧m < k) → n < k. Since universal
quantification is the same as taking intersections, we get at the end of
the day that LO is closed. For WO, notice that x ∈ WO ⇔ x ∈ LO
and (∀y ∈ NN)(∃n ∈ N) x(y(n + 1), y(n)) 6= 1. In other words, x is a
linear order that doesn’t have an infinite descending sequence. This is
co-analytic because both of the conjuncts are co-analytic (we’re making
one universal quantification over a real).

2. It’s enough to define a continuous map f : Tr → LO such that f−1[WO] =
WF because we know that WF is Π1

1-complete. We recall the Kleene-
Brouwer ordering < on trees, which turns out to be a linear order, and is
well-founded on a tree T exactly when T doesn’t have a branch. Identify
ω with ω<ω by fixing an enumeration b : ω → ω<ω. Define a function
f : Tr → LO by letting

f(T )(s, t) = 1 ⇔ (s, t ∈ T and s < t) or (s 6∈ T, t 6∈ T, b−1(s) <
b−1(t)) or (s ∈ T, t 6∈ T ).

In other words, we order the elements of T before the elements not in T ,
and we order the elements of T by the Kleene-Brouwer ordering. The
elements not in T are ordered by where they come in our enumeration b.
By definition it then follows that f(T ) ∈ LO for each T ∈ Tr. Further,
it follows that T is well-founded exactly when f(T ) ∈ WO because we
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ordered T using the Kleene-Brouwer ordering and the enumeration has
order type ω. It remains to check that f is continuous. But, this is
true because f is computable using the elements T ∈ 2ω<ω

and b as
oracles (by Lemma 3.11 in Marker’s DST notes, this is equivalent to
being continuous).

?

Problem 2. Let E be an equivalence relation on a Polish space X. Prove
that id(2N) ≤B E iff id(2N) vB E iff id(2N) vc E.

Solution. The converse direction of id(2N) vB E iff id(2N) vc E is clear,
and the forward direction holds because we can take a witness f : 2N → X
to id(2N) vB E and refine the topology τ on 2N to another Polish topology
τ ∗ with the same Borel sets that makes f continuous. Depending on what is
meant by id(2N), we might not be done, because we just changed topologies
to τ ∗. However, since (2N, τ ∗) is an uncountable Polish space, it contains a
homeomorphic copy of (2N, τ). If g : (2N, τ) → (2N, τ ∗) is an embedding that
witnesses this, then f ◦ g : (2N, τ)→ X witnesses that id(2N) vc E.

For the other iff, the one direction is clear. Assume that id(2N) ≤B E and
let f : 2N → X witness this. If f(x) = f(y), then f(x)Ef(y), and so x = y by
assumption on f . This witnesses that id(2N) vB E. ?

Problem 3. Fill in the details in the proof of Mycielskis theorem.

Solution. Given a meager equivalence relation E on a Polish space X, write
E = ∪nFn, where n ≥ 1 and Fn are increasing and nowhere dense. Without
loss of generality we can assume that (x, y) ∈ F implies that (y, x) ∈ F because
the map (x, y) 7→ (y, x) is a homeomorphism. We construct a Cantor scheme
(Us)s∈2<ω to satisfy the conditions mentioned in the statement of problem 81:

Set U∅ = X. Assume that we’ve defined pairwise disjoint Us for each s ∈
2n such that (Us × Ut) ∩ Fn = ∅ for distinct s and t with height n. We
construct Us inductively for s ∈ 2n+1 as follows: first, for each s ∈ 2n, let
Vs_i ⊆ Us for i = 0, 1 be pairwise disjoint and small enough so that we’ll
have vanishing diameter at the end of the day. We can do this because X is
perfect (otherwise {(x, x)} is non-meager and {(x, x)} ⊆ E). Next, using the
lexicographical ordering < on 2n+1, what we do is recursively choose Us by
forcing that (Us × Ut) ∩ Fn+1 = ∅ for any other t. We do this by iteratively
applying the fact that, for any open U, V , there’s U ′ ⊆ U and V ′ ⊆ V such
that (U ′ × V ′) ∩ Fn+1 = ∅. This is because Fn+1 is nowhere dense. The
construction gets a bit hairy because you have to keep track of what open sets
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you’ve been applying the above result to, so let me know if you want to talk
about it. ?

Problem 4. Let X be a Polish space and E be an equivalence relation on X
generated by a countable family {Bn}n∈N of Borel sets. Prove that a Borel set
B ⊆ X is E-invariant iff it belongs to the σ-algebra generated by {Bn}n∈N.

Solution. For notation, let σ denote the σ-algebra generated by {Bn}n∈N.
For the forward direction, fix an invariant B and define f : X → 2ω by

f(x) = y ⇔ (∀n)(y(n) = 1 ↔ x ∈ Bn). So, f(x) codes exactly which Bn

that x is in. This is Borel map because each Bn is Borel and we are taking
countable intersections.

Next, observe that it’s not too hard to show that f−1(C) ∈ σ for any Borel
set C ⊆ 2ω. This follows because {C ⊆ 2ω : f−1(C) ∈ σ} is a σ-algebra
containing the open sets. Now, let A = f”B. Because B is invariant, we
get that f−1(A) = B by the definition of E. So, by problem 60, we get that
there’s a Borel A′ ⊆ 2ω such that A = f”B = A′ ∩ f”X. This implies that
f−1(A′) = B, yielding B ∈ σ.

For the other direction, let I be the set of all B ∈ σ such that B is E-
invariant. For each Bn, observe that if there’s a b ∈ Bn such that xEb, then
x ∈ Bn by definition of E. So, I contains all elements of {Bn}n∈N. It’s also
not hard to check that I is a σ-algebra, which would imply that each element
of σ is E-invariant, as desired.

For example, if B is invariant and x ∈ [Bc] ∩ B, then there’s a b ∈ Bc such
that xEb. This implies that b ∈ [B] = B. This contradicts that b 6∈ B. So
[Bc] ⊆ Bc ⊆ [Bc]. ?

Problem 5. Prisoners and hats (E0 version)

Solution. This is the one where all the prisoners at once shout out what
they think their hat color is. First, we identify the color blue with 0 and
red with 1. The night before the execution, the prisoners use AC to choose an
element f out of each equivalence class of E0, agreeing on which representatives
they decided to choose. The day of the execution, once they’re lined up, they
observe that their hat colors induce a corresponding element x of 2ω. Because
they can all see each other, they know where they are in the line-up and
therefore can determine which f they chose is E0-equivalent to x. Because the
prisoner pn knows all of the digits of x besides x(n), prisoner pn will guess
f(n) for the value of x(n). Since two sequences are E0-equivalent when they
agree on a tail end, we’ll have that cofinitely many prisoners are saved. ?
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Problem 6. Let S ⊆ 2<N.

1. If S contains at most one element of each length, then GS is acyclic.

2. If S contains at least one element of each length, then EGS = E0.

Solution.

1. Assume for contradiction that there is a cycle of length n > 1 (with no
repeating vertex and xn = x0) and consider the longest s ∈ S associated
with its edges. Say that xi = s_1_x and xi+1 = s_0_x. where 0 ≤
i < n. Since s ∈ S is the longest sequence associated with its edges,
at no point will we flip the digits of x. If x0(|s|) = 1, then at some
point we’d have to flip the 0 in the |s|-th place back to a 1. Since s
is the longest element of S associated with its edges and S contains
at most one element of each length, there must then be a k > i such
that xk = s_1_x, contradicting that we don’t have a repeating vertex.
Similarly, if x0(|s|) = 0, then there’d have to be a k < i such that
xk = s_0_x, also contracting that we don’t have a repeating vertex.

2. We already know that EGS ⊆ E0. To show the other direction, we
show by induction that, for any s, t ∈ 2n and x ∈ 2ω, there’s a G0 path
connecting s_x and t_x. This implies that any two sequences that agree
on a tail end must be the same connected component of G0. Because S
must contain an element of length 0, we must have that ∅ ∈ S. This
implies that the base case n = 0 holds. Now, assume for any s, t ∈ 2n and
x ∈ 2ω, there’s a G0 path connecting s_x and t_x. Let s, t ∈ 2n+1 and
x ∈ 2ω. If s(n) = t(n), then we can appeal to the induction hypothesis
and we win. So assume without loss of generality that s(n) = 1 and
t(n) = 0. Let sn and tn denote the restrictions of s and t to domain
n. Fix a k ∈ S that has length n. Then, the induction hypothesis
implies that there’s a G0 path connecting s_x = s_n 1_x to k_1_x.
By definition of G0, since k ∈ S, we have that k_1_xG0k_0_x. By
the induction hypothesis again, we get that there’s a path connecting
k_0_x to t_n 0_x = t_x, completing the induction.

?

Problem 7. Prisoners and hats (G0 version)

Solution. Like before, the night before the execution, the prisoners use AC
to choose an element f out of each equivalence class of E0, agreeing on which
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representatives they decided to choose. The day of the execution, with all the
prisoners lined up, let x ∈ 2ω denote the binary sequence induced from the hat
colors (with blue being 0 and red being 1). Because they can all see each other,
they know where they are in the line-up and therefore can determine which f
the sequence x is E0-equivalent to, where f is the one they all previously agreed
on. Prisoner p0 counts the number of times that x and f disagree after the
first digit (because p0 doesn’t know what x(0) is) and guesses 0 if it’s an even
number of disagreements. Otherwise he guesses 1. Without loss of generality,
let’s say that pn guesses 0. Because they eventually agree, there will necessarily
be such a number. There’s a 50-50 chance p0 guesses the right answer. For
any n ≥ 1, pn counts the number of times that x and f disagree after the first
digit, not including the n-th digit of x and f (because by assumption pn only
doesn’t know what x(n) is). If pn counts an even number of disagreements,
then x(n) = f(n), or else p0 would have said they disagreed an odd number
of times. In this case, pn guesses whatever f(n) and is set free. Otherwise, pn
guesses 1− f(n). ?
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