Descriptive Set Theory HW 6

Thomas Dean

Problem 1. Show the following:

1. LO is a closed subset of $2^{\mathbb{N}^{2}}$ and WO is co-analytic.
2. Prove that WO is actually $\boldsymbol{\Pi}_{1}^{1}$-complete.

Solution.

1. Given $x \in 2^{\mathbb{N}^{2}}$, notice that $n<m$ is a clopen condition because it corresponds with checking $x(n, m)=1$. When you write out the definition of a linear order, one notices that we're just universally quantifying a bunch of clopen expressions like $(n<m \wedge m<k) \rightarrow n<k$. Since universal quantification is the same as taking intersections, we get at the end of the day that LO is closed. For WO, notice that $x \in \mathrm{WO} \Leftrightarrow x \in \mathrm{LO}$ and $\left(\forall y \in \mathbb{N}^{\mathbb{N}}\right)(\exists n \in \mathbb{N}) x(y(n+1), y(n)) \neq 1$. In other words, x is a linear order that doesn't have an infinite descending sequence. This is co-analytic because both of the conjuncts are co-analytic (we're making one universal quantification over a real).
2. It's enough to define a continuous map $f: \operatorname{Tr} \rightarrow L O$ such that $f^{-1}[W O]=$ $W F$ because we know that $W F$ is Π_{1}^{1}-complete. We recall the KleeneBrouwer ordering < on trees, which turns out to be a linear order, and is well-founded on a tree T exactly when T doesn't have a branch. Identify ω with $\omega^{<\omega}$ by fixing an enumeration $b: \omega \rightarrow \omega^{<\omega}$. Define a function $f: \operatorname{Tr} \rightarrow L O$ by letting
$f(T)(s, t)=1 \Leftrightarrow(s, t \in T$ and $s<t)$ or $\left(s \notin T, t \notin T, b^{-1}(s)<\right.$ $\left.b^{-1}(t)\right)$ or $(s \in T, t \notin T)$.
In other words, we order the elements of T before the elements not in T, and we order the elements of T by the Kleene-Brouwer ordering. The elements not in T are ordered by where they come in our enumeration b. By definition it then follows that $f(T) \in L O$ for each $T \in T r$. Further, it follows that T is well-founded exactly when $f(T) \in W O$ because we
ordered T using the Kleene-Brouwer ordering and the enumeration has order type ω. It remains to check that f is continuous. But, this is true because f is computable using the elements $T \in 2^{\omega<\omega}$ and b as oracles (by Lemma 3.11 in Marker's DST notes, this is equivalent to being continuous).

Problem 2. Let E be an equivalence relation on a Polish space X. Prove that id $\left(2^{\mathbb{N}}\right) \leq_{B} E \operatorname{iff} \operatorname{id}\left(2^{\mathbb{N}}\right) \sqsubseteq_{B} E \operatorname{iff} \operatorname{id}\left(2^{\mathbb{N}}\right) \sqsubseteq_{c} E$.

Solution. The converse direction of $\operatorname{id}\left(2^{\mathbb{N}}\right) \sqsubseteq_{B} E \operatorname{iff} \operatorname{id}\left(2^{\mathbb{N}}\right) \sqsubseteq_{c} E$ is clear, and the forward direction holds because we can take a witness $f: 2^{\mathbb{N}} \rightarrow X$ to $\operatorname{id}\left(2^{\mathbb{N}}\right) \sqsubseteq_{B} E$ and refine the topology τ on $2^{\mathbb{N}}$ to another Polish topology τ^{*} with the same Borel sets that makes f continuous. Depending on what is meant by $\operatorname{id}\left(2^{\mathbb{N}}\right)$, we might not be done, because we just changed topologies to τ^{*}. However, since $\left(2^{\mathbb{N}}, \tau^{*}\right)$ is an uncountable Polish space, it contains a homeomorphic copy of $\left(2^{\mathbb{N}}, \tau\right)$. If $g:\left(2^{\mathbb{N}}, \tau\right) \rightarrow\left(2^{\mathbb{N}}, \tau^{*}\right)$ is an embedding that witnesses this, then $f \circ g:\left(2^{\mathbb{N}}, \tau\right) \rightarrow X$ witnesses that $\operatorname{id}\left(2^{\mathbb{N}}\right) \sqsubseteq_{c} E$.

For the other iff, the one direction is clear. Assume that $\operatorname{id}\left(2^{\mathbb{N}}\right) \leq_{B} E$ and let $f: 2^{\mathbb{N}} \rightarrow X$ witness this. If $f(x)=f(y)$, then $f(x) E f(y)$, and so $x=y$ by assumption on f. This witnesses that $\operatorname{id}\left(2^{\mathbb{N}}\right) \sqsubseteq_{B} E$.

Problem 3. Fill in the details in the proof of Mycielskis theorem.
Solution. Given a meager equivalence relation E on a Polish space X, write $E=\cup_{n} F_{n}$, where $n \geq 1$ and F_{n} are increasing and nowhere dense. Without loss of generality we can assume that $(x, y) \in F$ implies that $(y, x) \in F$ because the map $(x, y) \mapsto(y, x)$ is a homeomorphism. We construct a Cantor scheme $\left(U_{s}\right)_{s \in 2^{<\omega}}$ to satisfy the conditions mentioned in the statement of problem 81:

Set $U_{\varnothing}=X$. Assume that we've defined pairwise disjoint U_{s} for each $s \in$ 2^{n} such that $\left(U_{s} \times U_{t}\right) \cap F_{n}=\varnothing$ for distinct s and t with height n. We construct U_{s} inductively for $s \in 2^{n+1}$ as follows: first, for each $s \in 2^{n}$, let $V_{s \sim i} \subseteq \overline{U_{s}}$ for $i=0,1$ be pairwise disjoint and small enough so that we'll have vanishing diameter at the end of the day. We can do this because X is perfect (otherwise $\{(x, x)\}$ is non-meager and $\{(x, x)\} \subseteq E)$. Next, using the lexicographical ordering $<$ on 2^{n+1}, what we do is recursively choose U_{s} by forcing that $\left(U_{s} \times U_{t}\right) \cap F_{n+1}=\varnothing$ for any other t. We do this by iteratively applying the fact that, for any open U, V, there's $U^{\prime} \subseteq U$ and $V^{\prime} \subseteq V$ such that $\left(U^{\prime} \times V^{\prime}\right) \cap F_{n+1}=\varnothing$. This is because F_{n+1} is nowhere dense. The construction gets a bit hairy because you have to keep track of what open sets
you've been applying the above result to, so let me know if you want to talk about it.

Problem 4. Let X be a Polish space and E be an equivalence relation on X generated by a countable family $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ of Borel sets. Prove that a Borel set $B \subseteq X$ is E-invariant iff it belongs to the σ-algebra generated by $\left\{B_{n}\right\}_{n \in \mathbb{N}}$.

Solution. For notation, let σ denote the σ-algebra generated by $\left\{B_{n}\right\}_{n \in \mathbb{N}}$.
For the forward direction, fix an invariant B and define $f: X \rightarrow 2^{\omega}$ by $f(x)=y \Leftrightarrow(\forall n)\left(y(n)=1 \leftrightarrow x \in B_{n}\right)$. So, $f(x)$ codes exactly which B_{n} that x is in. This is Borel map because each B_{n} is Borel and we are taking countable intersections.
Next, observe that it's not too hard to show that $f^{-1}(C) \in \sigma$ for any Borel set $C \subseteq 2^{\omega}$. This follows because $\left\{C \subseteq 2^{\omega}: f^{-1}(C) \in \sigma\right\}$ is a σ-algebra containing the open sets. Now, let $A=f^{\prime \prime} B$. Because B is invariant, we get that $f^{-1}(A)=B$ by the definition of E. So, by problem 60 , we get that there's a Borel $A^{\prime} \subseteq 2^{\omega}$ such that $A=f^{\prime \prime} B=A^{\prime} \cap f^{\prime \prime} X$. This implies that $f^{-1}\left(A^{\prime}\right)=B$, yielding $B \in \sigma$.
For the other direction, let \mathcal{I} be the set of all $B \in \sigma$ such that B is E invariant. For each B_{n}, observe that if there's a $b \in B_{n}$ such that $x E b$, then $x \in B_{n}$ by definition of E. So, \mathcal{I} contains all elements of $\left\{B_{n}\right\}_{n \in \mathbb{N}}$. It's also not hard to check that \mathcal{I} is a σ-algebra, which would imply that each element of σ is E-invariant, as desired.
For example, if B is invariant and $x \in\left[B^{c}\right] \cap B$, then there's a $b \in B^{c}$ such that $x E b$. This implies that $b \in[B]=B$. This contradicts that $b \notin B$. So $\left[B^{c}\right] \subseteq B^{c} \subseteq\left[B^{c}\right]$.

Problem 5. Prisoners and hats $\left(\mathbb{E}_{0}\right.$ version)
Solution. This is the one where all the prisoners at once shout out what they think their hat color is. First, we identify the color blue with 0 and red with 1. The night before the execution, the prisoners use AC to choose an element f out of each equivalence class of \mathbb{E}_{0}, agreeing on which representatives they decided to choose. The day of the execution, once they're lined up, they observe that their hat colors induce a corresponding element x of 2^{ω}. Because they can all see each other, they know where they are in the line-up and therefore can determine which f they chose is \mathbb{E}_{0}-equivalent to x. Because the prisoner p_{n} knows all of the digits of x besides $x(n)$, prisoner p_{n} will guess $f(n)$ for the value of $x(n)$. Since two sequences are \mathbb{E}_{0}-equivalent when they agree on a tail end, we'll have that cofinitely many prisoners are saved. \star

Problem 6. Let $S \subseteq 2^{<\mathbb{N}}$.

1. If S contains at most one element of each length, then \mathcal{G}_{S} is acyclic.
2. If S contains at least one element of each length, then $E_{\mathcal{G}_{S}}=\mathbb{E}_{0}$.

Solution.

1. Assume for contradiction that there is a cycle of length $n>1$ (with no repeating vertex and $x_{n}=x_{0}$) and consider the longest $s \in S$ associated with its edges. Say that $x_{i}=s^{\frown} 1^{\frown} x$ and $x_{i+1}=s^{\frown} 0^{\circ} x$. where $0 \leq$ $i<n$. Since $s \in S$ is the longest sequence associated with its edges, at no point will we flip the digits of x. If $x_{0}(|s|)=1$, then at some point we'd have to flip the 0 in the $|s|$-th place back to a 1 . Since s is the longest element of S associated with its edges and S contains at most one element of each length, there must then be a $k>i$ such that $x_{k}=s \frown 1 \frown x$, contradicting that we don't have a repeating vertex. Similarly, if $x_{0}(|s|)=0$, then there'd have to be a $k<i$ such that $x_{k}=s^{\frown} 0^{`} x$, also contracting that we don't have a repeating vertex.
2. We already know that $E_{\mathcal{G}_{S}} \subseteq \mathbb{E}_{0}$. To show the other direction, we show by induction that, for any $s, t \in 2^{n}$ and $x \in 2^{\omega}$, there's a \mathcal{G}_{0} path connecting $s^{\frown} x$ and $t^{\frown} x$. This implies that any two sequences that agree on a tail end must be the same connected component of \mathcal{G}_{0}. Because S must contain an element of length 0 , we must have that $\varnothing \in S$. This implies that the base case $n=0$ holds. Now, assume for any $s, t \in 2^{n}$ and $x \in 2^{\omega}$, there's a \mathcal{G}_{0} path connecting $s^{\frown} x$ and $t ` x$. Let $s, t \in 2^{n+1}$ and $x \in 2^{\omega}$. If $s(n)=t(n)$, then we can appeal to the induction hypothesis and we win. So assume without loss of generality that $s(n)=1$ and $t(n)=0$. Let s_{n} and t_{n} denote the restrictions of s and t to domain n. Fix a $k \in S$ that has length n. Then, the induction hypothesis implies that there's a \mathcal{G}_{0} path connecting $s^{\frown} x=s_{n}^{\frown} 1^{\frown} x$ to $k^{\frown} 1^{\frown} x$. By definition of \mathcal{G}_{0}, since $k \in S$, we have that $k \frown 1^{\frown} x \mathcal{G}_{0} k \frown 0 \frown x$. By the induction hypothesis again, we get that there's a path connecting $k^{\frown} 0^{\complement} x$ to $t_{n} 0^{\complement} x=t^{\complement} x$, completing the induction.

Problem 7. Prisoners and hats (\mathcal{G}_{0} version)
Solution. Like before, the night before the execution, the prisoners use AC to choose an element f out of each equivalence class of \mathbb{E}_{0}, agreeing on which
representatives they decided to choose. The day of the execution, with all the prisoners lined up, let $x \in 2^{\omega}$ denote the binary sequence induced from the hat colors (with blue being 0 and red being 1). Because they can all see each other, they know where they are in the line-up and therefore can determine which f the sequence x is \mathbb{E}_{0}-equivalent to, where f is the one they all previously agreed on. Prisoner p_{0} counts the number of times that x and f disagree after the first digit (because p_{0} doesn't know what $x(0)$ is) and guesses 0 if it's an even number of disagreements. Otherwise he guesses 1. Without loss of generality, let's say that p_{n} guesses 0 . Because they eventually agree, there will necessarily be such a number. There's a 50-50 chance p_{0} guesses the right answer. For any $n \geq 1, p_{n}$ counts the number of times that x and f disagree after the first digit, not including the n-th digit of x and f (because by assumption p_{n} only doesn't know what $x(n)$ is). If p_{n} counts an even number of disagreements, then $x(n)=f(n)$, or else p_{0} would have said they disagreed an odd number of times. In this case, p_{n} guesses whatever $f(n)$ and is set free. Otherwise, p_{n} guesses $1-f(n)$.

